

DESIGN
LINKÖPINGS TEKNISKA HÖGSKOLA | IDA | TDDD09 | GRUPP 3

REVIEWED Sebastian Wihlborg 2013-05-05

APPROVED Josef Gustafsson 2013-05-05

08 Fall	

 2013-05-05

DESIGN	 	

TABLE OF CONTENTS
Document history ... 1
1. Introduction .. 2
2. Design structure ... 2
3. Subsystems .. 3

3.1 Back-End ... 3
3.1.1 Network .. 3
3.1.2 Client (model interface) .. 4
3.1.3 Server .. 4
3.1.4 Database .. 4
3.1.5 Scenario .. 4

3.2 Front-End ... 5
3.2.1 Graphical user interface .. 5

4. Patterns ... 6
4.1 Observer .. 6

4.1.1 Overview ... 6
4.1.2 Structure .. 6
4.1.3 Behavior .. 6

4.2 Flyweight ... 6
4.2.1 Overview ... 6
4.2.2 Structure .. 6
4.2.3 Behavior .. 6

4.3 Model View Controller ... 6
4.3.1 Overview ... 6
4.3.2 Structure .. 7
4.3.3 Behavior .. 7

5. Requirement realizations .. 7
5.1 The gameplay requirements .. 7

5.1.1 View of participants .. 7
5.1.2 Basic scenario ... 7
5.1.3 Additional scenarios ... 7

5.2 The log requirements ... 8
5.2.1 View of participants .. 8
5.2.2 Basic scenario ... 8

6. Appendix A ... 9
6.1 Network Client Interface (methods called by the server) .. 9
6.2 Network Server Interface (methods called by the client) .. 9

 2013-05-05

DESIGN	 1

DOCUMENT HISTORY

VERSION DATE CHANGES REVIEWED

1.0 2013-02-06 First version Josef Gustafsson

1.1 2013-03-10 Updated Sebastian Karlsson

2.0 2013-05-05
More info added and

better reflect the
software

Sebastian Wihlborg

 2013-05-05

DESIGN	 2

1. INTRODUCTION

The purpose of this document is to describe the system elements as an abstraction of the source code.
The goal of this document is to avoid poorly chosen, tactical decision regarding the system when
implementing the solution.

2. DESIGN STRUCTURE

The drawing explains the basic concept of the system with three major subsystems and how they’re
interconnected. It also shows the different layers make up the client.

The model used in the MVC pattern is located in the server, however, there exists a local cache model
in each client. The local model is used to manage all underlying information, but no changes are made
to the model located in the server from the client. Instead the client makes a request to change an
actors’ location and the interface make the server request over the network. The server now decides
whether or not the client is allowed to move the actor and if so send an update to all subscribed
(explained later) clients.

 2013-05-05

DESIGN	 3

3. SUBSYSTEMS

The system is divided into a back-end part, handling the server etc. and a front-end part, handling the
GUI etc. Both the back-end part and the front-end part contain several subsystems. In this section all
the subsystem from each part is listed and described.

3.1 Back-End

The UML mock-up shows how the different classes of the back-end system are interconnected.

3.1.1 Network

(For the channel interface please se Appendix)

For this subsystem we are using WCF (Windows Communication Foundation). The network subsystem
shall transfer information between client and server in a safe and efficient manner. The above drawing
show how the channel interfaces moves the channel a layer down to simplify client and server
communication by using a pre-specified protocol. The abstraction let’s us specify which data to be sent

 2013-05-05

DESIGN	 4

using a specific function. The channel is specified as full duplex which allows us to send and receive
network messages asynchronously to each client.

Most of the interface methods does not return a value (they’re void), which allows us to make a request
and immediately forget about it on the client. The server responses are implemented using a callback
channel, the methods in this channel are mostly all void too which the server uses when sending
updates without a client requesting them.

3.1.2 Client (model interface)
(This part will not describe the graphical user interface, please look under the heading Graphical user
interface)

The client consists of three main components; the network client, the model interface and the GUI. The
networking parts’ main focus is keeping local changes on the client up-to date on the server. The
network client is then controlled and used by the model interface, which will make decision of what
and when to send.

When connecting to the server the client receives a list of available views, these represent all
(excluding special view, e.g. transport view) the available views, which can be subscribed and locked
to.

Subscribing to a view means that this client will receive all changes made to the view, however
subscribing to a view will not grant the client editing permission. To be able to change the model a
client must first lock the view (Locking is described below). A client can be subscribed to several
views at the same time, this gives us the ability to monitor any change, on any view. Using that feature
one can construct a graphical representation of resources used on each view.

Locking a view is exclusive, meaning that no more than one client can have a lock on any view at any
given time. The client may not lock more than one view at a time. Locking a view grants the client the
rights to edit and change the view, or rather make the request to edit and change (the server is the only
one which directly changes the model and the local cached model).

3.1.3 Server
The server responsibilities includes, but is not limited to; coordinating and controlling all connected
clients, log actions, synchronize relevant model data to subscribed clients. The system uses server-
based logging, a centralized log file is used to help a user analyze other users input. The server is
responsible for parsing through all the posts in the database and dynamically creating needed objects
using the flyweight pattern. Also the MVC model resides on the server, even though there’s a local
model on each client. The model on the clients only contains a subset of information contained in the
servers complete model.

3.1.4 Database
As a part of the server, this system shall contain all information required to use the system for the
specified scenario. The scenario is not part of the database, but all information, except scenario specific
values, are contained within the database. The pattern flyweight is used for the connection between
scenario and database (how is explained later on in this document).

3.1.5 Scenario
This scenario file is located on the server. The information contained within this file describes scenario
specific settings, e.g. which actor at which position, but does not contain information about the actor
itself, that data resides inside the database.

 2013-05-05

DESIGN	 5

3.2 Front-End

3.2.1 Graphical user interface
The GUI is built in WPF, Windows Presentation Foundation. It is quite complex and contains a lot of
classes and interfaces. These are however the most important ones.

The base class of our client is ViewGUI, this object handles the communication with our model.
ViewGUI holds a collection of WPF components implementing the IGameMenus interface. It is
through these menus the player can interact with the game and get information from. When the model
is changed the ViewGUI is notified via ActorEventHandler and ViewEventHandler, it relays these
events to all of it’s IGameMenus so they can react to it. A normal case of the listener pattern.
A special case of IGameMenu is the IGameGrid interface, this is the main grid; the game area. It can
be either a normal game grid (ActorGrid) or a special grid like overview or ViewContainer. These
objects are supposed to be WPF components one can put into a ScrollPanel.
In the case of a normal game grid then the IGameGrid can contain ActorGraphic objects. These are our
visual representation of actors from the model. When we interact with them, like moving them, we
notify the model so it changes itself and sync the change to the server. ActorGraphic objects can also
have TagGraphic objects attached to them which are our visual representation for tags.

A system running through the whole GUI is the drop system. ActorGraphic and TagGraphic
implements the IDropable interface, this means that when they think that they are dropped (last
manipulator leaves them) they notify our ViewGUI’s NotifyDropListeners function to tell that they
have been dropped. This function iterates through all IDropListeners the ViewGUI knows of and ask
them if they collides with the dropped object and if so if they want to do something with it and thus end
the iteration. Many functions like tagging, removing tags, moving actors, transporting actors to other
views and grouping actors are done via this system. This system can also be seen as a special form of
the listener pattern.

 2013-05-05

DESIGN	 6

4. PATTERNS

4.1 Observer

4.1.1 Overview
The listener pattern removes the need to polling. An object is a list of other objects that are interested in
when it changes itself. When this happens it notifies them.

4.1.2 Structure
The object that we want to listen to has a list of listeners. In most cases the listeners are an interface
with a function, notifyChanged(). All functions that change the listened object also calls a function that
notifies all the listeners.

4.1.3 Behavior
Example: Change view
The user presses a Location button, which tells the ViewGUI object that we want to change view.
Unless something goes wrong ViewGUI recreates it’s ActorGrid and notifies all IGameGrid listeners
by iterating through them and calling HandleViewChange(ID) so the menus can update to reflect that.

4.2 Flyweight

4.2.1 Overview
The flyweight pattern minimizes memory usage by sharing as much common information as possible
between objects. This is possible because many objects will have data fields that are the same, for
example all fireman instances will have the “fireman.pgn” string as an image name field.

4.2.2 Structure
Memory usage is minimized by using two objects instead of one; one “base” object and one “instance”
object. The instance object knows what base object it’s an instance of and ask that object when shared
data needs to be accessed. For example, we have the base object “fireman”, we can have several
instance objects pointing to this object containing only unique data like position and rotation
themselves. When we need to access shared data we access the base object from our instance object.

4.2.3 Behavior
We use the flyweight pattern for one of its’ nice side effects, that the base data and the instance data are
separated. This partitioning of data is natural when we have a database for storing the actor’s base data
and a scenario file where the instance data is stored, like starting position.
When we load a scenario the base objects are loaded from the database and the instance objects are
loaded from the scenario file.

4.3 Model View Controller

4.3.1 Overview
Model View Controller is a popular pattern when one has a collection of data and several objects which
can modify it or display it. The model has two interfaces, a view interface which provides a read only
interface to the data contained in the model and a controller interface which can modify the data. All
functions which modifies the data also notifies all Views listening to the model via the Observer
pattern so they can update themselves to reflect the changes.

In our case the View and Controller has been merged into one large facade holding everything from
data reading, data manipulating and some internal server communication functions.
The users interaction is separated from the information of the model. The model can only be changed
by using the model interface layer in the client. The interface will also notify the view on any changes
made to the model using events.

 2013-05-05

DESIGN	 7

4.3.2 Structure
This pattern is made out of three participants; The model, the view and the controller. The controller is
the component which updates and changes the model. The model in return updates the users view.
Often the view and controller are embedded closely with each other, for example the GUI both displays
(the view) and controls the changes (controller). In DigiMergo the underlying model will be made
private and its data cannot directly be accessed and changed. For that we’ll have the model interface
which is used as a point of synchronization and buffer between the GUI and the server.
This implementation differs somewhat from the definition of the MVC pattern as the controller (in
respect to the GUI) isn’t really controlling the model. It’s possible that we might have a controller
controlling another controller inside the model interface, however this is a conscious choice as all
changes will be controlled by the same portion of code that’s keeping the rest of the system
synchronized.

4.3.3 Behavior
The pattern radiates through the whole system and every significant action runs through it. Say for
example that we want to have an actor we can move to another view. First, we have the model
downloaded from the server containing a view with an actor on. The GUI creates a visual
representation of this actor from data accessed via the view/controller facade. Using some WPF magic
we can detect when the player have moved the actor into a new location. When this happens we send a
moveActor function to our facade with the changed actor’s ID and new position. If we have moved the
actor into a component representing another location then we send a sendActor command instead. The
sendActor command replies to our view via a ACTOR_REMOVE event. When this event is triggered
we remove the actor from our view.
If another client is connected to the other view then it is also notified via an actorEvent so it can
display the new transported actor as incoming.

Example: Moving an actor
The user sees an actor on the screen that he wants to move. This view is given from the model which
contains the location of all screen objects. The user points and drags the object to its desired location.
The controller updates the model with the required changes and the model in return notifies the view of
a change and the object has been moved to its new position.

5. REQUIREMENT REALIZATIONS

5.1 The gameplay requirements

5.1.1 View of participants
The gameplay requirements are very much linked to the MVC pattern. The interface between the
controller and the model is what decide what you are allowed to do with the model. However the
model must have the capability of changing in the way that the controller wants to.

5.1.2 Basic scenario
Requirement 32.2: Patients and staff shall be able to be placed in a transport vehicle.

To realize this requirement the view needs to provide the user with the option to place a patient or staff
into a transport vehicle. Then there must be command in the interface relating to that action. Finally the
model of the transport vehicle must be able to have a patient or staff placed into it.

5.1.3 Additional scenarios
Requirement 29.2: Have a backside with information (ABCDE) to be visible by the action "examine".

This requirement refers to the patient actor. First we need a way for the user to perform the action
“examine”. Then we need the interface to be able to handle that action. Finally we need to be able to
extract the ABCDE-information of that patient from the model and put it on the view.

 2013-05-05

DESIGN	 8

5.2 The log requirements

5.2.1 View of participants
Almost every action that needs to be logged happens on a client. However the log is on the server.
Therefore the client needs to notify the server when any significant action is performed.

5.2.2 Basic scenario
Requirement 45.1: Contain all the information including the start time, and end time for actions which
take time, for practice starting, resource arrival, when sectors become available, treatment decisions,
transports, treatments, priorities (triage), patient examinations, patient complications.

Since the system is built up the way it is. The client notifies the server when it changes the local model
so that it can change the “real” model. Therefore we keep a log on the server that we update when we
update the “real” model. The server also keeps track of the current game time and can easily put that
into the log as well.

 2013-05-05

DESIGN	 9

6. APPENDIX A

6.1 Network Client Interface (methods called by the server)

void pingClient();
void sendView(View view);
void addView(View view);
void removeView(int viewID);
void setActorListMatrices(List<int> actorIDList, List<float[]> renderMatrixList);
void addActorList(List<ActorInstance> actorList, int viewID);
void removeActorList(List<int> actorIDList, int viewID);
void setActorListActive(List<int> actorIDList);
void setActorTags(int actorID, List<int> tagList);
void setSettings(Settings Setting);
void setTime(DateTime serverTime);
void addMovingActors(MovingActors movingActors);
void removeMovingActors(MovingActors movingActors);

6.2 Network Server Interface (methods called by the client)

bool connectToServer();
void pingServer();
List<ViewInfo> getViewsInfo();
bool lockView(int viewID);
void unlockView(int viewID);
bool subscribeView(int viewID);
void unsubscribeView(int viewID);
void requestMoveActorList(List<int> actorIDList, List<float[]> matrix);
void requestSendActorList(List<int> actorIDList, int viewID);
void requestMoveActorListIntoView(List<int> actorID);
void requestAddTagToActor(int actorID, int tagType);
void requestRemoveTagFromActor(int actorID, int tagType);
void requestCreateNewActor(string name);
void requestDestroyActorList(List<int> actorIDList);
void requestAddActorListToRoom(List<int> actorIDList, int roomID);
void requestRemoveActorListFromRoom(List<int> actorIDList, int roomID);

